ON THE ORIGIN OF SPECIES (selection)

Charles Darwin

I have now recapitulated the chief facts and considerations which have thoroughly convinced me that species have changed, and are still slowly changing by the preservation and accumulation of successive slight favorable variations. Why, it may be asked, have all the most eminent living naturalists and geologists rejected this view of the mutability of species? It cannot be asserted that organic beings in a state of nature are subject to no variation; it cannot be proved that the amount of variation in the course of long ages is a limited quantity; no clear distinction has been, or can be, drawn between species and well-marked varieties. It cannot be maintained that species when intercrossed are invariably sterile, and varieties invariably fertile, or that sterility is a special endowment and sign of creation. The belief that species were immutable productions was almost unavoidable as long as the history of the world was thought to be of short duration, and now that we have acquired some idea of the lapse of time, we are too apt to assume, without proof, that the geological record is so perfect that it would have afforded
us plain evidence of the mutation of species, if they had undergone mutation.

But the chief cause of our natural unwillingness to admit that one species has given birth to other and distinct species is that we are always slow in admitting any great change of which we do not see the intermediate steps. The difficulty is the same as that felt by so many geologists, when Lyell first insisted that long lines of inland cliffs had been formed, and great valleys excavated, by the slow action of the coast waves. The mind cannot possibly grasp the full meaning of the term of a hundred million years; it cannot add up and perceive the full effects of many slight variations, accumulated during an almost infinite number of generations.

Although I am fully convinced of the truth of the views given in this volume under the form of an abstract, I by no means expect to convince experienced naturalists whose minds are stocked with a multitude of facts all viewed, during a long course of years, from a point of view directly opposite to mine. It is so easy to hide our ignorance under such expressions as the “plan of creation,” “unity of design,” etc., and to think that we give an explanation when we only restate a fact. Anyone whose disposition leads him to attach more weight to unexplained difficulties than to the explanation of a certain number of facts will certainly reject my theory. A few naturalists, endowed with much flexibility of mind and who have already begun to doubt on the immutability of species, may be influenced by this volume, but I look with confidence to the future, to young and rising naturalists, who will be able to view both
sides of the question with impartiality. Whoever is led to believe that species are mutable will do good service by conscientiously expressing his conviction, for only thus can the load of prejudice by which this subject is overwhelmed be removed.

Several eminent naturalists have of late published their belief that a multitude of reputed species in each genus are not real species, but that other species are real, that is, have been independently created. This seems to me a strange conclusion to arrive at. They admit that a multitude of forms, which till lately they themselves thought were special creations, and which are still thus looked at by the majority of naturalists, and which consequently have every external characteristic feature of true species—they admit that these have been produced by variation, but they refuse to extend the same view to other and very slightly different forms. Nevertheless they do not pretend that they can define, or even conjecture, which are the created forms of life and which are those produced by secondary laws. They admit variation as a vera causa in one case; they arbitrarily reject it in another, without assigning any distinction in the two cases. The day will come when this will be given as a curious illustration of the blindness of preconceived opinion. These authors seem no more startled at a miraculous act of creation than at an ordinary birth. But do they really believe that at innumerable periods in the earth’s history certain elemental atoms have been commanded suddenly to flash into living tissues? Do they believe that at each supposed act of creation one individual or many were produced? Were all the infinitely numerous kinds of animals and plants created
as eggs or seed, or as full grown? And in the case of mammals, were they created bearing the false marks of nourishment from the mother’s womb? Although naturalists very properly demand a full explanation of every difficulty from those who believe in the mutability of species, on their own side they ignore the whole subject of the first appearance of species in what they consider reverent silence.

It may be asked how far I extend the doctrine of the modification of species. The question is difficult to answer, because the more distinct the forms are which we may consider, by so much the arguments fall away in force. But some arguments of the greatest weight extend very far. All the members of whole classes can be connected together by chains of affinities, and all can be classified on the same principle, in groups subordinate to groups. Fossil remains sometimes tend to fill up very wide intervals between existing orders. Organs in a rudimentary condition plainly show that an early progenitor had the organ in a fully developed state, and this in some instances necessarily implies an enormous amount of modification in the descendants. Throughout whole classes various structures are formed on the same pattern, and at an embryonic age the species closely resemble each other. Therefore I cannot doubt that the theory of descent with modification embraces all the members of the same class. I believe that animals have descended from at most only four or five progenitors, and plants from an equal or lesser number.

Analogy would lead me one step further, namely, to the belief that all animals and plants have descended from some one prototype. But
analogy may be a deceitful guide. Nevertheless all living things have much in common, in their chemical composition, their germinal vesicles, their cellular structure, and their laws of growth and reproduction. We see this even in so trifling a circumstance as that the same poison often similarly affects plants and animals or that the poison secreted by the gallfly produces monstrous growths on the wild rose or oak tree. Therefore I should infer from analogy that probably all the organic beings which have ever lived on this earth have descended from some one primordial form, into which life was first breathed.

When the views entertained in this volume on the origin of species, or when analogous views are generally admitted, we can dimly foresee that there will be a considerable revolution in natural history. Systematists will be able to pursue their labors as at present, but they will not be incessantly haunted by the shadowy doubt whether this or that form is in essence a species. This I feel sure, and I speak after experience, will be no slight relief. The endless disputes whether or not some fifty species of British brambles are true species will cease. Systematists will have only to decide (not that this will be easy) whether any form is sufficiently constant and distinct from other forms to be capable of definition and, if definable, whether the differences are sufficiently important to deserve a specific name. This latter point will become a far more essential consideration than it is at present, for differences, however slight, between any two forms, if not blended by intermediate gradations, are looked at by most naturalists as sufficient to raise both forms to the
rank of species. Hereafter we shall be compelled to acknowledge that the only distinction between species and well-marked varieties is that the latter are known, or believed, to be connected at the present day by intermediate gradations whereas species were formerly thus connected. Hence, without quite rejecting the consideration of the present existence of intermediate gradations between any two forms, we shall be led to weigh more carefully and to value higher the actual amount of difference between them. It is quite possible that forms now generally acknowledged to be merely varieties may hereafter be thought worthy of specific names, as with the primrose and cowslip, and in this case scientific and common language will come into accordance. In short, we shall have to treat species in the same manner as those naturalists treat genera, who admit that genera are merely artificial combinations made for convenience. This may not be a cheering prospect, but we shall at least be freed from the vain search for the undiscovered and undiscoverable essence of the term species.

The other and more general departments of natural history will rise greatly in interest. The terms used by naturalists of affinity, relationship, community of type, paternity, morphology, adaptive characters, rudimentary and aborted organs, etc., will cease to be metaphorical, and will have a plain signification. When we no longer look at an organic being as a savage looks at a ship, as at something wholly beyond his comprehension; when we regard every production of nature as one which has had a history; when we contemplate every complex structure and instinct as the summing up of many contrivances, each useful
to the possessor, nearly in the same way as when we look at any great mechanical invention as the summing up of the labor, the experience, the reason, and even the blunders of numerous workmen; when we thus view each organic being, how far more interesting, I speak from experience, will the study of natural history become!

A grand and almost untrodden field of inquiry will be opened on the causes and laws of variation, on correlation of growth, on the effects of use and disuse, on the direct action of external conditions, and so forth. The study of domestic productions will rise immensely in value. A new variety raised by man will be a far more important and interesting subject for study than one more species added to the infinitude of already recorded species. Our classifications will come to be, as far as they can be so made, genealogies and will then truly give what may be called the plan of creation. The rules for classifying will no doubt become simpler when we have a definite object in view. We possess no pedigrees or armorial bearings, and we have to discover and trace the many diverging lines of descent in our natural genealogies, by characters of any kind which have long been inherited. Rudimentary organs will speak infallibly with respect to the nature of long-lost structures. Species and groups of species which are called aberrant, and which may fancifully be called living fossils, will aid us in forming a picture of the ancient forms of life. Embryology will reveal to us the structure, in some degree obscured, of the prototypes of each great class.

When we can feel assured that all the individuals of the same species, and all the closely allied species of most genera, have within a not-very-
remote period descended from one parent and have migrated from some
one birthplace, and when we better know the many means of migration,
then, by the light which geology now throws, and will continue to
throw, on former changes of climate and of the level of the land, we
shall surely be enabled to trace in an admirable manner the former
migrations of the inhabitants of the whole world. Even at present, by
comparing the differences of the inhabitants of the sea on the opposite
sides of a continent, and the nature of the various inhabitants of that
continent in relation to their apparent means of immigration, some light
can be thrown on ancient geography.

The noble science of geology loses glory from the extreme
imperfection of the record. The crust of the earth with its embedded
remains must not be looked at as a well-filled museum, but as a poor
collection made at hazard and at rare intervals. The accumulation
of each great fossiliferous formation will be recognized as having
depended on an unusual concurrence of circumstances, and the
blank intervals between the successive stages as having been of vast
duration. But we shall be able to gauge with some security the duration
of these intervals by a comparison of the preceding and succeeding
organic forms. We must be cautious in attempting to correlate as
strictly contemporaneous two formations which include few identical
species by the general succession of their forms of life. As species are
produced and exterminated by slowly acting and still existing causes,
and not by miraculous acts of creation and by catastrophes, and as the
most important of all causes of organic change is one which is almost
independent of altered and perhaps suddenly altered physical conditions, namely, the mutual relation of organism to organism—the improvement of one being entailing the improvement or the extermination of others—it follows that the amount of organic change in the fossils of consecutive formations probably serves as a fair measure of the lapse of actual time. A number of species, however, keeping in a body might remain for a long period unchanged, while within this same period, several of these species, by migrating into new countries and coming into competition with foreign associates, might become modified, so that we must not overrate the accuracy of organic change as a measure of time. During early periods of the earth’s history, when the forms of life were probably fewer and simpler, the rate of change was probably slower, and at the first dawn of life, when very few forms of the simplest structure existed, the rate of change may have been slow in an extreme degree. The whole history of the world, as at present known, although of a length quite incomprehensible by us, will hereafter be recognized as a mere fragment of time, compared with the ages which have elapsed since the first creature, the progenitor of innumerable extinct and living descendants, was created.

In the distant future I see open fields for far more important researches. Psychology will be based on a new foundation, that of the necessary acquirement of each mental power and capacity by gradation. Light will be thrown on the origin of man and his history.

Authors of the highest eminence seem to be fully satisfied with the view that each species has been independently created. To my mind it
accords better with what we know of the laws impressed on matter by the Creator, that the production and extinction of the past and present inhabitants of the world should have been due to secondary causes, like those determining the birth and death of the individual. When I view all beings not as special creations, but as the lineal descendants of some few beings which lived long before the first bed of the Silurian system was deposited, they seem to me to become ennobled. Judging from the past, we may safely infer that not one living species will transmit its unaltered likeness to a distant futurity. And of the species now living very few will transmit progeny of any kind to a far distant futurity, for the manner in which all organic beings are grouped shows that the greater number of species of each genus, and all the species of many genera, have left no descendants, but have become utterly extinct. We can so far take a prophetic glance into futurity as to foretell that it will be the common and widely spread species, belonging to the larger and dominant groups, which will ultimately prevail and procreate new and dominant species. As all the living forms of life are the lineal descendants of those which lived long before the Silurian epoch, we may feel certain that the ordinary succession by generation has never once been broken and that no cataclysm has desolated the whole world. Hence we may look with some confidence to a secure future of equally inappreciable length. And as natural selection works solely by and for the good of each being, all corporeal and mental endowments will tend to progress toward perfection.
It is interesting to contemplate an entangled bank, clothed with many plants of many kinds, with birds singing on the bushes, with various insects flitting about, and with worms crawling through the damp earth, and to reflect that these elaborately constructed forms, so different from each other and dependent on each other in so complex a manner, have all been produced by laws acting around us. These laws, taken in the largest sense, being growth with reproduction; inheritance, which is almost implied by reproduction; variability from the indirect and direct action of the external conditions of life, and from use and disuse; a ratio of increase so high as to lead to a struggle for life, and as a consequence to natural selection, entailing divergence of character and the extinction of less-improved forms. Thus, from the war of nature, from famine and death, the most exalted object which we are capable of conceiving, namely, the production of the higher animals, directly follows. There is grandeur in this view of life, with its several powers, having been originally breathed into a few forms or into one and that, while this planet has gone cycling on according to the fixed law of gravity, from so simple a beginning endless forms most beautiful and most wonderful have been, and are being, evolved.
QUESTIONS FOR DISCUSSION

Three groups of questions are included with this selection:

- The **content questions** will help you think further about the scientific information contained in the selection and see relationships between the selection and your classroom activities.
- The **discussion questions** ask you to formulate your own responses to the issues raised by the selection and connect your study with other subjects and with your beliefs and convictions.
- The **application questions** draw on a wider base of information than is contained in the selection alone and sometimes require additional research. They are designed to give you opportunities to work more extensively with the concepts you encounter in the selection.

Content Questions

- According to Darwin, what are the two main reasons that most naturalists tended to believe that species were immutable?
- In Darwin’s view, why are so many experienced naturalists likely to resist the theory of evolution? Why are younger naturalists likely to embrace it?
- What reasons does Darwin give for considering false the distinction between “real” (separately created) and “not real” species? (3)
- What is the only distinction between species and well-marked varieties, according to Darwin?
- What are the “laws acting around us” that have produced life on Earth, in Darwin’s account? (11)

Discussion Questions

- Why does evolution, as Darwin puts it, make the study of natural history “far more interesting”? (7)
- Darwin concludes that “from the war of nature, from famine and death, the most exalted object which we are capable of conceiving, namely, the production of the higher animals, directly follows.” What point about the origins of humanity is he making here? What does he mean when he says “there is grandeur in this view of life”? (11)
Application Questions

- As evidence that “all animals and plants have descended from some one prototype,” Darwin asserts that “all living things have much in common, in their chemical composition, their germinal vesicles, their cellular structure, and their laws of growth and reproduction.” What are some specific examples of these similarities, especially ones that have been discovered since 1859? (4-5)

- What does Darwin mean when he states that “natural selection works solely by and for the good of each being” and that “all corporeal and mental endowments will tend to progress toward perfection”? Would you modify this claim, based on your knowledge of the evolutionary process? (10)